Analytical calculation of the flux density distribution in a superconducting reluctance machine with HTS bulks rotor
نویسندگان
چکیده
This paper deals with the analytical computation of the magnetic field distribution in a wholly superconducting reluctance motor. The rotor is made with high temperature superconductor bulks which nearly present a diamagnetic behavior under zero-field cooling. The stator consists of superconducting armature windings fed by AC currents of high amplitude. The superconducting stator winding can generate a high rotating magnetic field without the need of ferromagnetic material in the rotor. The electromagnetic torque is obtained by the interaction between the rotating magnetic field created by the superconducting stator windings and the variable reluctance due to the superconducting bulks. The proposed analytical method is based on the resolution of Laplace’s equation (by the separation of variables method) for each sub-domain, i.e. rotor shaft, holes between superconducting bulks and air-gap. The global solution is obtained using boundary and continuity conditions. Magnetic field distribution and electromagnetic torque obtained by the analytical method are compared with those obtained from finite element analyses.
منابع مشابه
2D Analytical Modeling of a Wholly Superconducting Synchronous Reluctance Motor
An analytical computation of the magnetic field distribution in a wholly superconducting synchronous reluctance motor is proposed. The stator of the studied motor consists of three-phase HTS armature windings fed by AC currents. The rotor is made with HTS bulks which present the specificity to have a diamagnetic behavior under zerofield cooling. The electromagnetic torque is obtained by the int...
متن کاملOptimization of an HTS Induction/Synchronous Motor According to Changing of HTS Tapes Critical Current by Analytical Hierarchy Process
This paper represents the performance of a squirrel-cage High Temperature Superconducting Induction/ Synchronous Motor (HTS-ISM) based on nonlinear electrical equivalent circuit. The structure of the HTS-ISM is the same as that of the squirrel-cage type induction machine, and the secondary windings are fabricated by the use of the HTS wires. It has already been shown that based on the experimen...
متن کاملA Novel Approach to Design the Dual Rotor Switched Reluctance Motor Based Electric Vehicles
Electric and hybrid electric vehicles are attractive candidates for sustainable transportation due to its higher efficiency and low emission. The critical choice on the electric motors is its capability of motoring and regenerative braking characteristics. Switched reluctance machines are viable candidate as with proper control and extended constant power range operation replacing the multi-gea...
متن کاملDevelopment of an Analytic Model for Flux Switching Motors
This paper presents developing an analytical model for flux switching motors. The motor is a class of variable reluctance motors that has two windings on stator; a field winding and an armature winding. Due to saliency of both stator and rotor poles, accurate modeling is difficult which arises from the nonlinear behavior of the machine. This paper presents a simple model which is able to predic...
متن کاملMagnetic Equivalent Circuit Model of Interior Permanent-Magnet Synchronous Machine Considering Magnetic Saturation
This paper improves an analytical model for interior permanent-magnet synchronous machine (IPMSM) by a magnetic equivalent circuit (MEC) approach. The proposed MEC model consists of three major regions: the stator, the rotor, and the air gap. The conventional reluctance approach is applied to the first two regions. Since the magnetic field in air gap region is supposed to distribute unevenly, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematics and Computers in Simulation
دوره 90 شماره
صفحات -
تاریخ انتشار 2013